Synthesis and Electrochemical Properties of Co3O4@Reduced Graphene Oxides Derived from MOF as Anodes for Lithium-Ion Battery Applications

نویسندگان

چکیده

In this study, we utilized nano-sized Co3O4 and reduced graphene oxides (rGOs) as composite anode materials for Li-ion batteries. The Co3O4/C was derived from ZIF67 (Zeolitic Imidazolate Framework-67) wrapped in rGOs through precipitation. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission (TEM) were used to identify the crystal structure, phase purity, surface morphology of composite. composition-optimized Co3O4/rGO/C exhibited a reversible capacity 1326 mAh/g first cycle, which higher than that with 900 at current density 200 mA/g. Moreover, after 80 cycles, maintained 1251 same density, also bare (595 mAh/g). Additionally, good retention 98% 90 indicating its excellent cycling stability high capacity. Therefore, electrode has great potential promising material

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes.

Submicrometer-sized capsules made of Si nanoparticles wrapped by crumpled graphene shells were made by a rapid, one-step capillary-driven assembly route in aerosol droplets. Aqueous dispersion of micrometer-sized graphene oxide (GO) sheets and Si nanoparticles were nebulized to form aerosol droplets, which were passed through a preheated tube furnace. Evaporation-induced capillary force wrapped...

متن کامل

Applications of Carbon Nanotubes for Lithium Ion Battery Anodes

Carbon nanotubes (CNTs) have displayed great potential as anode materials for lithium ion batteries (LIBs) due to their unique structural, mechanical, and electrical properties. The measured reversible lithium ion capacities of CNT-based anodes are considerably improved compared to the conventional graphite-based anodes. Additionally, the opened structure and enriched chirality of CNTs can help...

متن کامل

Electrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery

Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...

متن کامل

Li4Ti5O12/graphene nanoribbons composite as anodes for lithium ion batteries

In this paper, we report the synthesis of a Li4Ti5O12/Graphene Nanoribbons (LTO/GNRs) composite using a solid-coating method. Electron microscope images of the LTO/GNRs composite have shown that LTO particles were wrapped around graphene nanoribbons. The introduction of GNRs was observed to have significantly improved the rate performance of LTO/GNTs. The specific capacities determined of the o...

متن کامل

Structured Silicon Anodes for Lithium Battery Applications

Pillar arrays fabricated on silicon substrates have been tested as potential anodes for lithium batteries. Electrodes of array characteristics, diameter 580 6 150 nm; fractional surface coverage 0.34; height 810 nm are reported here. Cyclic voltammetry ~CV! and cyclic galvanostatic tests of alloying/dealloying of electrochemically produced lithium with silicon were carried out, and results corr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sustainability

سال: 2023

ISSN: ['2071-1050']

DOI: https://doi.org/10.3390/su15064988